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Abstract. The compression of brushes of terminally anchored chain within the de Gennes n-cluster model
is analysed. This model was developed for Poly(ethylene oxide) in water but may apply to other systems.
Brushes described by this model exhibit discontinuous concentration profile associated with the coexistence
of an inner dense “phase” and an outer, dilute, one. The compression induces growth of the dense, weakly
compressible region. This, in turn, gives rise to distinctive force profiles associated with changes of slope.
When the dilute region disappears, the compression of two brushes can give rise to a transient attraction.

PACS. 36.20.Ey Conformation (statics and dynamics) – 61.25.Hq Macromolecular and polymer solutions;
polymer melts; swelling – 82.70.Dd Colloids

1 Introduction

Surface treatments reducing protein adsorption and cell
adhesion are of great importance to biomedical engineer-
ing and to biotechnology. They enhance the biocompat-
ibility of applications as diverse as controlled release ve-
hicles and artificial organs. Coating by poly(ethylene ox-
ide), PEO, is, possibly, the best available treatment [1–3].
PEO, (CH2CH20)n, a neutral, flexible and water soluble
polymer, is also widely used as a colloidal stabiliser and
viscosity modifier of water born systems. The behaviour
of aqueous solutions of PEO, in bulk and at interfaces was
thus extensively studied [4–6]. Yet, a complete theoretical
interpretation of the experimental results is still lacking.
A theoretical model for the behaviour of PEO solutions
in water was recently proposed by de Gennes [7]. In the
de Gennes “n-cluster” theory χeff is an increasing func-
tion of the monomer volume fraction, φ, when the mixing
free energy is described in terms of a single Flory χeff
parameter. This gives rise to a novel form of coexistence
within brushes of terminally anchored chains. An inner,
dense, region coexists with an exterior dilute region thus
giving rise to a discontinuity in the concentration pro-
file [8]. This article is concerned with the corresponding
force profiles. In particular, the force profiles of brushes de-
scribed by the n-cluster model when compressed by a flat,
impenetrable, non adsorbing, bare surface. As we shall see,
the n-cluster model leads to distinctive variations in the
slope of the equilibrium force profile. These result from
the compression induced shift in the relative weight of the
“coexisting phases” within the brush. The effect arises be-
cause the dense phase is only weakly compressible. When
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the compression involves two brushes, this model suggests
a qualitatively novel feature: the onset of adhesion when
the dilute region disappears. This is also the case when the
compressing surface is selectively attractive to the dense
layer. Accordingly, force profiles obtained by utilising the
Surface Force Apparatus (SFA) can be used as a diag-
nostic for the validity of this model. The predicted force
laws are of interest for the interpretation of current SFA
experiments involving PEO brushes and for the design of
future experiments. Similar signatures may also occur in
pressure-area curves obtained from film balance studies
involving diblock copolymers incorporating a PEO block.
This analysis is also of interest for the following reasons.
First, while the n-cluster model was formulated for PEO
it may well apply to a wider family of polymers whose
solubility in water is due to hydrogen bonding. This in-
cludes, for example, Poly(N -isoproylacrylamide) [9]. The
de Gennes model may also apply to solutions of poly-
acrilates in apolar solvents [8]. Second, force profiles mea-
sured by SFA are directly relevant to the understanding
of the role PEO brushes in colloidal stabilisation and in
the repression of protein adsorption [10,11].

The de Gennes model, as applied to brushes, is briefly
described in Section 2. The presentation is based on the
“Pincus approximation” [12]. This enables an analytic, al-
beit approximate, description of the n-cluster brush. In
particular, it provides explicit expressions for the concen-
tration profile of the brush. In addition, it yields simple
force laws that characterise the compression of the brush
in certain ranges. The compressed brush is discussed in
Section 3. As was noted before, this discussion is lim-
ited to the case of a brush compressed by an impenetra-
ble, non adsorbing, flat surface. The experimental situa-
tion is discussed in the final section. In it we consider,
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Fig. 1. A schematic concetration profile of an unperturbed n-
cluster brush. It consists of an inner dense layer spanning the
0 < z < Hi region, and an exterior, dilute phase. The inset
contains a schematic picture of the brush.

qualitatively, a number of pertinent issues: the compres-
sion of two brushes, the compression by a selective surface
and the possible role of dynamics. As we shall see, the n-
cluster model provides a possible rationalisation for the
recent experimental results of Sheth and Leckband [10].

2 The n-cluster model: a brief summary

The de Gennes n-cluster model [7] is motivated by two
experimental observations concerning the behaviour of
PEO solutions in water. First, the effective χeff parame-
ter, as obtained from calorimetric measurements, increases
strongly with φ [4]. Note that this is the case when the
mixing free energy is expressed in terms of a single Flory
χeff parameter. Second, formation of aggregates at high
φ [13]. It attributes this behaviour to attractive inter-
actions involving clusters of n > 2 monomers while the
binary interactions between monomers remain repulsive.
Such higher order attractions may reflect, for example,
formation of micelles or helices. Within this approach the
attractive interactions between n monomers are described
by a negative nth order virial coefficient, ρ. Following
de Gennes we focus on the simplest case, of an ather-
mal good solvent under dilute solution conditions i.e., the
second virial coefficient is v = a3 where a is a typical
monomer size. Accordingly, the Flory χ parameter, as de-
fined by v = a3(1− 2χ), is χ = 0. Attractive interactions
leading to the formation of clusters of n monomers give
rise to a −ρφn term (ρ > 0) in the interaction free en-
ergy per unit volume, Fint. Altogether, Fint, in the limit
of high polymerisation degree, N � 1, when the transla-
tional entropy of the polymer is negligible, is

Fint/kT = ρ(T )(φ− φn) + (1− φ) ln(1− φ). (1)

The ρφ term imposes Fint = 0 at φ = 1 as is required from
a mixing free energy. For ρ > ρc = n−1[(n−1)/(n−2)]n−2,
Fint exhibits a concave, unstable region. This signals

demixing into two bulk phases, dense and dilute, char-
acterised respectively by φ+ and φ−. The values of φ+

and φ− at coexistence are determined by two condi-
tions: (i) equality of the exchange chemical potentials,
µ = dFint/dφ i.e., µ(φ+) = µ(φ−) and (ii) equality
of the osmotic pressures, π(φ+) = π(φ−), where π =
φdFint/dφ−Fint. This amounts to the replacement of the
concave region in Fint by a common tangent specified by

Fint(φ) = φµ(φ±)− π(φ±) φ− < φ < φ+. (2)

The bulk demixing predicted for free PEO chains in water
is qualitatively modified in a brush of terminally anchored
polymers. Only the phase boundary survives, giving rise
to a discontinuity in the concentration profile. The the-
oretical description of unperturbed PEO brushes within
the de Gennes model was explored by Wagner et al. [8].
Their analysis involves a slight modification of the SCF
method developed by Milner et al. [14] and by Zhulina
et al. [15]. For brevity we use a simpler, approximate,
argument, suggested by Pincus [12], to describe the re-
sults of Wagner et al. and to study the compression be-
haviour. The Pincus approximation occupies an ineterme-
diate position between the Alexander model and the full
SCF theory. It recovers the concentration profile as calcu-
lated using the SCF method. However, the approximation
is based on an assumed form of the end point distribu-
tion. The assumed form differs from the one obtained via
the SCF calcuation. The Pincus approximation can not
thus replace the full SCF approach. However, its relative
simplicity does allow one to obtain analytic, albeit ap-
proximate, experssions for the concentration profiles and
the force laws. The flat brush, of uniform grafting den-
sity, σ, consists of monodispersed chains comprising each
of N monomers. To ensure overlap between the chains,
the area per chain, σ−1a2, is required to be smaller than
R2
F where RF ≈ N3/5a is the Flory radius of the chain.

The densely grafted layer is assumed to be laterally invari-
ant. The mean free energy per unit area is γ =

∫
Fbrushdz

where Fbrush = Fint +Fel−λkTφ(z) and z is the perpen-
dicular distance from the surface into the solvent. The first
term, Fint, allowing for the interaction free energy of the
monomers, is given by (1). For the brush, this expression
is valid for any N since the chains lose their translational
entropy upon grafting. The treatment of the elastic free
energy, Fel, is the core of the Pincus approximation. Two
ingredients are involved: (i) each chain is considered as a
Gaussian spring having a stretching penalty of kTz2/2R2

o

where Ro ≈ N1/2a is the unperturbed chain span. This
replaces the “local” elasticity used in the full SCF treat-
ment. The chain ends are distributed throughout the layer
with a density Ψ(z). Altogether Fel/kT = Ψ(z)z2/2R2

o.
(ii) Ψ(z) is approximated by Ψ(z) = const′φ(z)/N . This
approximation is poor near the grafting surface, at z ≈ 0.
However, it yields the correct equilibrium conditions be-
cause of the dominance of highly stretched chains for
which this approximation works well. Within this argu-
ment const′ = 1 however comparison to SCF results sug-
gests const′ = π2/4. The last term, λkTφ(z), allows for
the constraint on the number of monomers per chain and
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λ is the corresponding Lagrange multiplier. The equi-
librium condition δγ/δφ = ∂Fbrush/∂φ = 0 leads to
µ[φ(z)]/kT = λ − Bz2 where µ(φ) is the local exchange
chemical potential and B = π2/8N2a2. At the outer edge
of the unperturbed brush, z = Ho, φ(Ho) = 0 and the
equilibrium condition is thus

µ/kT = B(H2
o − z

2) (3)

where Ho is determined from

σNa =

∫ Ho

o

φ(z)dz. (4)

Note that BH2
o is the exchange chemical potential at the

grafting surface, z = 0. While ρ < ρc the PEO brush is not
expected to exhibit any exceptional traits. The signatures
of the n-cluster model become apparent when ρ > ρc.
In such cases it is possible to distinguish between three
regimes. At low grafting densities, 0 < σ < σc, the un-
perturbed brush is, essentially, described by a parabolic
concentration profile. At higher grafting densities, σc <
σ < σu, the concentration profile exhibits a discontinu-
ity at the boundary between an inner, dense, region and
an exterior, dilute one. Finally, when σ > σu the brush
comprises of a single, dense region. In order to obtain ap-
proximate expressions for σc and σu it is necessary to first
consider the structure of the brush at the intermediate
regime, σc < σ < σu.

The distinctive discontinuity in φ(z) as predicted by
the n-cluster model appears when ρ > ρc. Its appear-
ance is signalled by multiple roots to (3). These, in turn,
are due to a van der Waals loop traced by µ(φ) in the
φ− < φ < φ+ range. This behaviour is indicative of a con-
cave, unstable region in Fbrush. It suggests a coexistence
between two phases, φ− and φ+. As we shall see φ− and φ+

are identical to those characterising the bulk coexistence.
As before, φ− and φ+ are specified by two conditions: (i)
µbrush(φ−) = µbrush(φ+) where µbrush = ∂Fbrush/∂φ is
the local exchange chemical potential at z. This leads to
µ(φ+)/kT − Bz2

+ = µ(φ−)/kT − Bz2
−. Note that µbrush

includes a term reflecting the extension penalty of the
chains. At the “phase boundary”, z+ = z− = Hi and
µ(φ+) = µ(φ−). (ii) πbrush(φ+) = πbrush(φ−) where
πbrush = φ2[d(Fbrush/φ)/dφ] is the local osmotic pressure.
This condition reduces to π(φ+) = π(φ−). Thus the coex-
istence within the brush involves the bulk monomer vol-
ume fractions, φ+ and φ−. However, because of (3) the
coexistence is limited to a single altitude z = Hi specified
by

µ(φ±)/kT = B(H2
o −H

2
i ). (5)

It thus appears as a discontinuity in φ(z). This argument
indicates that the brush is described by Fbrush with Fint in
which the common tangent (Eq. (2)), replaces the concave
region in the φ− < φ < φ+ range.

For large n, φ+ ≈ 1� φ− and it is possible to obtain
an analytic approximation for φ(z) when ρ > ρc. In the
range 0 ≤ z ≤ Hi, where φ > φ+, µ(φ) ≈ − ln(1− φ) and
(3) leads to

φ ≈ 1−exp[−B(H2
o−z

2)] ≈ 1−(1−φ+) exp[−B(H2
i −z

2)].
(6)

When σ � 1/a2, as is typically the case, BH2
o � 1 and

(6) may be approximated by

φ ≈ φ+ + (1− φ+)BHo(Ho − z). (7)

At the outer range, Hi ≤ z ≤ Ho, where 0 ≤ φ ≤ φ− � 1,
µ ≈ 2φ− nρφn−1 ≈ φ and (3) yields a parabolic profile

φ ≈ B(H2
o − z

2) ≈ φ− +B(H2
i − z

2). (8)

Once the brush structure in the σc < σ < σu range is
known we are in a position to estimate σc and σu. σc is
attained when the maximal concentration in the parabolic
brush, φ(0), equals φ−. The dilute brush can not sustain
higher concentrations. For σ < σc the concentration pro-
file is φ ≈ B(H2

o − z
2) and Ho ≈ Nσ1/3a. Accordingly

φ(0) ≈ BH2
o ≈ σ

2/3 and

σc ≈ φ
3/2
− . (9)

The upper boundary of the coexistence range, σu, may
be identified with the σ for which the brush consists of a
single dense region such that at the outer edge φ(Ho) ≈
φ+. A rough approximation for σu is possible in the large n
case when (7) is applicable. Arguing that φ(0) ≈ 1 leads to
Ho ≈ Na. The conservation of monomers condition leads

to σNa ≈
∫ Ho
o

φdx ≈ φ(Ho)Ho. Finally, the condition
φ(Ho) ≈ φ+ yields

σu ≈ φ+. (10)

For σ ≥ σu, all the monomers are incorporated into the
dense region. This signals the breakdown of the Pincus
approximation and the SCF theory. Both descriptions re-
quire the existence of a dilute, parabolic region at the
outer edge of the brush. However, this requirement be-
comes unphysical for σ ≥ σu because this region is then
fully depleted. This effect is due to the discontinuity in φ
and it has no counterpart in “simple” brushes.

3 The compressed brush

For a give σ it is possible to move through these regimes
by compressing the layer thus increasing the concentration
within it. A dilute, parabolic brush will develop a “coex-
istence” profile upon compression to H < Hc. As in the
case of σc, Hc is specified by the requirement φ(0) ≈ φ−.
For a compressed brush, before the onset of coexistence,
φ = λ − Bz2 and λ ≈ σ2/3(Ho/H + H2/H2

o ) where
Ho ≈ Nσ1/3a [16]. Accordingly Hc is specified by

φ− ≈ σ
2/3

(
Ho

Hc
+
H2
c

H2
o

)
. (11)

When σ � σc, Hc � Ho and the first term is dominant.
In this regime

Hc ≈ σ
2/3Ho/φ− ≈ σNa/φ−. (12)

Upon stronger compression, to H < Hu, the dilute region
disappears and the brush is converted to a single dense
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region. The identification of Hu, as that of σu, is based
on the requirement that φ(Hu) ≈ φ+. In the large n case,
when σNa ≈ φ(H)H, this leads to

Hu ≈ σ
2/3Ho/φ+ ≈ σNa/φ+. (13)

The compressive pressure, f , needed to maintain the brush
at H < Ho is equal to the osmotic pressure at the tip
i.e., f = π[φ(H)]. f = −dγeq/dH where γeq is obtained
by integration of Fbrush at equilibrium. At equilibrium
µ/kT = λ − Bz2 and thus Fbrush = Fint − φµ = −π.
Accordingly

f =
d

dH

∫ H

o

π(z)dz = π(H) (14)

where π(z) is the local osmotic pressure. Since the com-
pression of the brush always increases the concentration
at the tip the force profile is monotonically increasing.
This is in marked distinction to the familiar situations
involving coexistence. For example, the compression of a
fluid coexisting with its vapour is isobaric. In such situ-
ations the chemical potential of the two phases is iden-
tical. In the brush case this equality holds only at the
discontinuity site. This consideration also leads to the im-
mediate conclusion is that the compressive force at Hi,
f(Hi) = π(φ±), is independent of the grafting density. As
we shall see, the force profile for σ < σc exhibits three
regimes. For weak compressions, Ho > H > Hc, the force
profile of a “simple”, parabolic brush is recovered. At in-
termediate compressions, Hc > H > Hu, the restoring
force is weaker. This is an example of the LeChatelier prin-
ciple. The restoring force when equilibration between the
two phases is allowed is weaker than that expected in the
absence of such internal degrees of freedom. Finally, for
H < Hu the force profile reflects the weak compressibility
of the dense phase.

Simple expressions for the compressive force law are
easily obtained in the vicinity of Hc and Hu. It is most
convenient to consider the case of σ < σc when Ho ≈
Nσ1/3a and B ≈ σ2/3/H2

o . As was noted earlier, for weak
compression, Ho > H > Hc, we expect the force profile
of a parabolic brush. Within the Pincus approximation,
ignoring numerical prefactors, we obtain [16]

φ(z) ≈ σ2/3

[
Ho

H
+
H2

H2
o

]
− σ2/3 z

2

H2
o

. (15)

Accordingly, the leading terms for f/kT ≈ φ2(H) are

f/kT ≈ σ4/3

[(
Ho

H

)2

−

(
H

Ho

)]
. (16)

Here, and in the remainder of this section, we delete higher
order terms since the Pincus approximation does not yield
the correct expressions for them. When H = Hc, a dense
phase begins to form. Thus, for Hu < H < Hc it is neces-
sary to allow for the effect of the coexistence. To this end,
we utilise the relationship [17]

φ− − φ = B(H2 −H2
i ). (17)

At the immediate vicinity of Hc, H ≤ Hc, a thin dense
layer appears. In this regime H � Hi ≈ 0. Accordingly

φ ≈ φ− − σ
2/3

(
H

Ho

)2

. (18)

and the leading terms in f are

f/kT ≈ φ2
− − φ−σ

2/3

(
H

Ho

)2

. (19)

On the other hand, in the neighbourhood of Hu, H ≥ Hu,
the dense phase incorporates most of the brush. In this
case, Hi ≈ Hu and thus

φ ≈ φ− − σ
2/3

[(
H

Ho

)2

−

(
Hu

Ho

)2
]

≈ φ− − σ
2/3Hu

Ho

(
H −Hu

Ho

)
(20)

and

f/kT ≈ φ2
− − φ−σ

2/3Hu

Ho

(
H −Hu

Ho

)
. (21)

As was already discussed, the H dependence of (19) and
(21) is indeed weaker than that exhibited by (16). One
may attempt to obtain a more complete expression for f
by utilising the conservation of monomers in addition to
(17). This is beyond the scope of the present work, espe-
cially in view of the expected role of hysteresis in the prob-
lem. This effect, to be considered in the following section,
may prevent the measurement of the equilibrium force law.

4 Concluding remarks

The reported force profiles [18,19], as obtained by SFA
experiments involving PEO brushes, do not display the
signatures of the n-cluster model, as analysed in this ar-
ticle. This may be due to a number of reasons. It is pos-
sible that the n-cluster model does not apply to PEO.
As noted above, this model was motivated, in part, by
reports of aggregation of PEO chains leading to gel like
phase [13]. This observation is subject of debate [20,21].
At this point it is important to note the n-cluster model
may apply to other systems. A promising candidate is
Poly(N -isoproylacrylamide). Experimental data concern-
ing brushes of this polymer was already interpreted in
terms of the de Gennes model [9]. It would be thus in-
teresting to study the compression behaviour brushes of
Poly(N -isoproylacrylamide) using the SFA.

One should also consider the possibility that the n-
cluster model does apply to PEO and that the expected
force laws were not observed because of experimental dif-
ficulties. Two such difficulties come to mind. First, the
values of ρ(T ) and n or, equivalently, φ+ and φ−, that
characterise PEO are not known. It is thus impossible to
predict the range of grafting densities and compressions
where the effect is expected. This calls for a systematic
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study of PEO brushes over a wide range of grafting densi-
ties. However, for the systems studied [18,19], it is difficult
to attain the range of interest i.e., grafting densities be-
yond weak overlap. Second, one should consider the role
of equilibration dynamics in these experiments. The cal-
culated force profiles are based on the assumption that
the compressed layer fully attains its equilibrium state.
However, the distinctive features of the force profiles re-
sult from the occurrence of a compression induced first
order phase transition. One should allow thus for poten-
tially long lived metastable states. These will exhibit the
behaviour of a “normal brush” i.e., a brush having no at-
tractive high order interactions. In turn, this suggests that
the rate of compression is important. It might be neces-
sary to maintain the layer at a state of compression for ex-
tended period in order to observe the predicted behaviour.
This argument also suggests that the force profiles may
exhibit hystersis effects. In particular, the decompression
and compression curves may differ. Here, two contributing
factors come into play. In addition to the possibility of long
lived metastable state, the dense state is expected to have
longer relaxation times. In fact, de Gennes [7] suggested
that the marked hystersis observed in SFA experiments
involving uniformly adsorbed PEO [22,23] may be due to
the formation of a dense phase in the compressed layer.

Thus far we have limited the discussion to the situa-
tion analysed in this article, namely the confinement of
the brush by a bare, non adsorbing plate. With certain
important caveats, the predicted force laws are also valid
for the compression of two brushes. The two situations are
effectively indistinguishable so long as the dilute regions in
the brushes survive. This is due to the limited interpen-
etration between the two layers [24,25]. However, quali-
tatively new features are expected when the dilute layer
disappears. Two scenarios come to mind. One occurs when
the grafting density is high enough, σ > σu, such that the
uncompressed brush consists solely of a dense region. In
this case one may expect the two layers to experience short
range attraction. This is somewhat reminiscent of the at-
traction between polymer layers in a poor solvent [26].
However, in the poor solvent case the attraction is due to
binary monomer-monomer interactions while within the
de Gennes model it is due to the formation of “mixed”
n-clusters, incorporating monomers belonging to the two
brushes. Furthermore, in a poor solvent one expects at-
traction irrespective of the grafting density or even the
adsorption mode. In the present scenario brushes display
a transition from repulsion to attraction when the graft-
ing density changes while immersed in an athermal good
solvent. The second scenario occurs when the dilute re-
gion disappears because of strong compression, σ < σu
and H < Hu. In this case the initial interaction, while
Ho > H > Hu, is expected to be purely repulsive. How-
ever, when the dilute “phase” disappears the two layers
are expected to exhibit transient but possibly long lived
attraction. In this, second, scenario the onset of the at-
traction may be slow because of the metastability issue
discussed earlier.

Sheth and Leckband [10] recently reported SFA mea-
surements of the interactions between a surface bearing
grafted PEO chains and a surface bearing grafted pro-
teins. Their essential results are as follows. At low com-
pressive loads the interactions were repulsive and the re-
sulting force curves were consistent with the theoretical
predictions assuming that PEO behaves as a “simple”
flexible chain. Attractive interactions developed when the
compressive loads were higher. The nature of the PEO
layer changed following such strong compression. A much
weaker compressive load was necessary in order to achieve
adhesion. This “modified form” of the PEO relaxed back
to its “repulsive” form after a few hours. No deviations
from the “simple chain” behaviour were observed when
the compressive surface was coated by a lipid monolayer.
The reported results are difficult to rationalise within the
framework of standard polymer theory i.e., considering
flexible, structureless coils with positive virial coefficients.
However the results are not inconsistent with the n-cluster
model if one assumes that the interaction between the sur-
face functionalities of the protein and the PEO n-clusters
are attractive. Such interactions can, arguably, nucleate
the dense PEO phase as well as give rise to contact attrac-
tion. The protein coated surface, within this discussion, is
an example of a selective surface that is attractive only to
the dense phase.

It is clear that the reported attraction between com-
pressed PEO brushes and proteins does not prove that the
n-cluster model indeed applies to PEO. These results are
also not inconsistent with the theory of Bjorling et al. [27]
which is based on very different assumptions. In particular
it is assumed that monomers may interchangeably assume
either a hydrophobic or hydrophilic state. This model also
predicts dense brushes consisting of two regions. In this
case the inner, dense, region is hydrophobic while the outer
dilute region is hydrophilic. However, within this model
the associated concentration profile is continuous. A simi-
lar behaviour is also expected within the model proposed
by Bekiranov et al. [28]. In this model the φ dependent χ
parameter reflects two contributions. The bare back bone
is hydrophobic and thus experiences poor solvent condi-
tions. This is however modified by Hydrogen bonds with
the surrounding water molecules. These render PEO solu-
ble so long as φ is low enough to allow a siginificant num-
ber of H-bonds. At this point it is impossible to grade the
relative performance of the three models. It is neverthe-
less encouraging to note that the n-cluster model can pro-
vide an explanation for the experimental results discussed
above. Clearly, considerable amount of experimental and
theoretical work will be necessary in order to understand
the behaviour of these systems.

I thank D. Leckband, for introducing me to the problem and
for sharing her results prior to publication, and E. Sevick for
heated discussions.
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